$\mathrm{Cl}-\mathrm{O} 4$	$1.386(5)$	$\mathrm{Cl}-\mathrm{O} 5$
$\mathrm{~N} 1-\mathrm{C} 1$	$1.471(6)$	$\mathrm{N} 2-\mathrm{C} 8$
$\mathrm{O} 1-\mathrm{C} 7$	$1.360(5)$	$\mathrm{C} 1-\mathrm{C} 2$
$\mathrm{C} 2-\mathrm{C} 3$	$1.390(6)$	$\mathrm{C} 3-\mathrm{C} 4$
$\mathrm{C} 2-\mathrm{C} 7$	$1.399(6)$	$\mathrm{C} 4-\mathrm{C} 5$
$\mathrm{C} 5-\mathrm{C} 6$	$1.387(7)$	$\mathrm{C} 6-\mathrm{C} 7$
$\mathrm{C} 6-\mathrm{C} 8$	$1.484(7)$	$\mathrm{C} 4-\mathrm{C} 9$
$\mathrm{~N} 1-\mathrm{Cu}-\mathrm{O} 1$	$91.0(1)$	$\mathrm{O} 3-\mathrm{Cl}-\mathrm{O} 2$
$\mathrm{O} 4-\mathrm{Cl}-\mathrm{O} 2$	$111.2(4)$	$\mathrm{O} 4-\mathrm{Cl}-\mathrm{O} 3$
$\mathrm{O} 5-\mathrm{Cl}-\mathrm{O} 2$	$108.0(3)$	$\mathrm{O} 5-\mathrm{Cl}-\mathrm{O} 3$
$\mathrm{O} 5-\mathrm{Cl}-\mathrm{O} 4$	$107.9(3)$	$\mathrm{Cu}-\mathrm{O} 1-\mathrm{Cu}$
$\mathrm{C} 7-\mathrm{O} 1-\mathrm{Cu}$	$129.5(3)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Cu}$
$\mathrm{Cu}-\mathrm{N} 2-\mathrm{C} 8$	$110.7(4)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$119.6(4)$	$\mathrm{C} 7-\mathrm{C} 2-\mathrm{C} 1$
$\mathrm{C} 7-\mathrm{C} 2-\mathrm{C} 3$	$118.8(4)$	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$117.1(4)$	$\mathrm{C} 9-\mathrm{C} 4-\mathrm{C} 3$
$\mathrm{C} 9-\mathrm{C} 4-\mathrm{C} 5$	$122.6(5)$	$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 5$	$118.5(4)$	$\mathrm{C} 8-\mathrm{C} 6-\mathrm{C} 5$
$\mathrm{C} 8-\mathrm{C} 6-\mathrm{C} 7$	$120.4(4)$	$\mathrm{C} 2-\mathrm{C} 7-\mathrm{O} 1$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{O} 1$	$119.0(4)$	$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 2$
$\mathrm{C} 6-\mathrm{C} 8-\mathrm{N} 2$	$112.0(4)$	

1.453 (4)
1.497 (8)
1.505 (7)
1.384 (7)
1.371 (8)
1.396 (6)
1.510 (7)
108.9 (3)
113.4 (3)
107.1 (3)
102.2 (1)
112.6 (3)
112.9 (4)
121.6 (4)
122.4 (5)
120.4 (5)
123.2 (5)
121.1 (5)
121.2 (4)
119.8 (4)

The structure was solved and refined using SHELX76 (Sheldrick, 1976). The metal-atom position was deduced from a Patterson synthesis and remaining non-H atoms were located by successive ΔF syntheses. Refinement was by full-matrix least squares. H atoms (except the methyl H atoms) were located from the difference Fourier map and refined isotropically. Molecular geometry calculations were performed using PARST (Nardelli, 1982).

The authors wish to thank Professor J. R. Helliwell for the use of data collection facilities and Professor K. Nag for helpful discussions.

Lists of structure factors, anisotropic displacement parameters, H -atom coordinates and complete geometry, including H -atom geometry, have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71655 (15 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: HE1005]

References

Atkins, A. J., Blake, A. J. \& Schroder, M. (1993). J. Chem. Soc. Chem. Commun. pp. 353-355.
Bell, M., Edwards, A. J., Hoskins, B. F., Kachab, E. H. \& Robson, R. (1989). J. Am. Chem. Soc. 111, 3603-3610.
Hoskins, B. F., Robson, R. \& Smith, P. (1990). J. Chem. Soc. Chem. Commun. pp. 488-489.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Mandal, S. K., Thompson, L. K., Nag, K., Charland, J.-P. \& Gabe, E. J. (1987a). Can. J. Chem. 65, 2815-2823.
Mandal, S. K., Thompson, L. K., Nag, K., Charland, J.-P. \& Gabe, E. J. (1987b). Inorg. Chem. 26, 1391-1395.
Nardelli, M. (1982). PARST. A System of Computer Routines for Calculating Molecular Parameters from the Results of Crystal Structure Analysis. Univ. of Parma, Italy.
Pilkington, N. H. \& Robson, R. (1970). Aust. J. Chem. 23, 2225-2236.
Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.
Sorrel, T. N. (1989). Tetrahedron, 45, 3-68.
Vigato, P. A., Tamburin, S. \& Fenton, D. E. (1990). Coord. Chem. Rev. 106, 25-170.

Acta Cryst. (1994). C50, 544-546

Tetrapotassium μ-Carbonato- μ-0x0bis[nitrilotriacetatoiron(III)] Dimethanol Dihydrate

Toyoaki Fuitita and Shigeru Ohba*

Department of Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi 3, Kohoku-ku, Yokohama 223, Japan

Yuzo Nishida and Atsuko Goto
Department of Chemistry, Faculty of Science, Yamagata University, Kojirakawa 1-4-12, Yamagata 990, Japan

Tadashi Tokil

Department of Chemistry, Faculty of Science and Engineering, Saga University, Saga 840, Japan
(Received 19 March 1993; accepted 13 September 1993)

Abstract

The structure of a μ-carbonato- μ-oxo-diiron(III) complex with the tetradentate tripodal ligand nitrilotriacetate (nta), $\left[\mathrm{Fe}_{2}(\mathrm{nta})_{2}\left(\mathrm{CO}_{3}\right) \mathrm{O}\right]^{4-}$, has been determined by single-crystal X-ray diffraction for the potassium salt, $\mathrm{K}_{4}\left[\mathrm{Fe}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{NO}_{6}\right)_{2}\left(\mathrm{CO}_{3}\right) \mathrm{O}\right] .2 \mathrm{CH}_{3}-$ $\mathrm{OH} \cdot 2 \mathrm{H}_{2} \mathrm{O}$. The binuclear complex has crystallographic twofold symmetry and the coordination geometry around the Fe atoms is distorted octahedral. The $\mathrm{Fe}-\mathrm{O}-\mathrm{Fe}$ bridge angle is 121.1 (2) ${ }^{\circ}$ and the $\mathrm{Fe} \cdots \mathrm{Fe}$ interatomic distance is 3.188 (1) \AA. The $\mathrm{Fe}_{2}\left(\mathrm{CO}_{3}\right) \mathrm{O}$ core is not planar; the dihedral angle between the $\mathrm{Fe}_{2} \mathrm{O}$ and CO_{3} planes is $33.8(5)^{\circ}$.

Comment

The $\mathrm{Fe}^{\text {III }}$-nta solution, prepared by mixing an iron(III) solution and nitrilotriacetic acid, H_{3} nta, exhibits unique reactivity. The repeated intraperitoneal injection of the $\mathrm{Fe}^{\mathrm{III}}$-nta solution to rats and rabbits induces an iron overload similar to human hemochromatosis (Awai, Narasaki, Yamanoi \& Seno, 1979). The $\mathrm{Fe}^{\mathrm{III}}$-nta solution is nephrotoxic and renal carcinoma is also induced (Okada \& Midorikawa, 1982). In animals treated with the above solution, the products of lipid peroxidation increase (Goddard, Basford \& Sweeney, 1986). Nishida, Yoshizawa \& Akamatsu (1991) succeeded in isolating the $\mathrm{Fe}^{\mathrm{III}}$ complex with the nta ligand, $\left[\mathrm{Fe}_{2} \mathrm{O} \text { (acetato)(nta) }\right]^{3-}$, and concluded that the unique reactivity of the $\mathrm{Fe}^{\mathrm{II}}$-nta solution described
above is due to its dimeric structure with a μ-oxo bridge (Nishida, 1991). In this study the μ-oxo- $\mathrm{Fe}^{\mathrm{III}}$ nta complex with a carbonato bridge, (I), was isolated.

(I)

The dimensions of the μ-carbonato- μ-oxo-diiron(III) core are similar to those of the tris(2-pyridylmethyl)amine (TPA) adduct in crystals of $\left[\mathrm{Fe}_{2} \mathrm{O}-\right.$ $\left.\left(\mathrm{CO}_{3}\right)(\mathrm{TPA})_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot 2 \mathrm{CH}_{3} \mathrm{OH}$ (Norman, Holz, Ménage, O'Connor, Zhang \& Que, 1990). The structures and magnetic properties of μ-car-boxylato- μ-oxo-diiron(III) complexes with TPA have been reported also (Norman, Yan, Que, Backes, Ling, Sanders-Loehr, Zhang \& O'Connor, 1990). The μ-oxo-diiron(III) complexes show strong intramolecular antiferromagnetic coupling via a superexchange mechanism of two high-spin ferric ions (Drüeke, Wieghardt, Nuber, Weiss, Fleischhauer, Gehring \& Haase, 1989). The $-J$ value (Hamiltonian, $\mathscr{H}=-2 J s_{1} . s_{2}$) of the title compound after efflorescence was determined to be $83 \mathrm{~cm}^{-1}$ by measuring magnetic susceptibilities in the temperature range $80-300 \mathrm{~K}$ using the Faraday method.

Fig. 1. ORTEP drawing (Johnson, 1965) of $\left[\mathrm{Fe}_{2} \mathrm{O}\left(\mathrm{CO}_{3}\right)(\mathrm{nta})_{2}\right]^{4-}$ with the displacement ellipsoids at the 25% probability level.

Experimental

By adding methanol to a solution (pH 7.2) of ferric chloride, $\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{COOH}\right)_{3}$ and NaHCO_{3}, the crude samples were obtained as brown powder, and were recrystallized from a methanol/water
(8/2) solution. Analysis found: C $21.77, \mathrm{H} 2.90, \mathrm{~N} 3.43 \%$. Analysis calculated for $\mathrm{K}_{4}\left[\mathrm{Fe}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{NO}_{6}\right)_{2}\left(\mathrm{CO}_{3}\right)(\mathrm{O})\right] .2 \mathrm{CH}_{3} \mathrm{OH}$.$2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C} 21.96, \mathrm{H} 2.95, \mathrm{~N} 3.41 \%$. The specimen was sealed in a capillary to prevent efflorescence.

Crystal data

$\mathrm{K}_{4}\left[\mathrm{Fe}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{NO}_{6}\right)_{2}\left(\mathrm{CO}_{3}\right)-\right.$
O]. $2 \mathrm{CH}_{4} \mathrm{O} .2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=820.45$
Monoclinic
C2/c
$a=15.628$ (2) \AA
$b=12.915$ (2) \AA
$c=14.533$ (2) \AA
$\beta=102.90(1)^{\circ}$
$V=2859.4(6) \AA^{3}$
$Z=4$
$D_{x}=1.91 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 29 reflections
$\theta=10-15^{\circ}$
$\mu=1.68 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Prism
$0.80 \times 0.40 \times 0.20 \mathrm{~mm}$
Dark green

Data collection

Rigaku AFC-5 diffractometer
$\theta-2 \theta$ scans
Absorption correction:
by integration from crystal shape
$T_{\text {min }}=0.469, T_{\text {max }}=$
0.755

3415 measured reflections
3287 independent reflections
2207 observed reflections
$\left[\left|F_{o}\right|>3 \sigma\left(\left|F_{o}\right|\right)\right]$
$R_{\text {int }}=0.022$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-20 \rightarrow 20$
$k=0 \rightarrow 16$
$l=0 \rightarrow 18$
5 standard reflections monitored every 100 reflections
intensity variation: 2.0%

Refinement

Refinement on F
$R=0.045$
$w R=0.057$
$S=2.32$
2207 reflections
194 parameters
H -atom parameters not refined
$w=1 /\left[\sigma^{2}\left(\left|F_{o}\right|\right)+\left(0.015\left|F_{o}\right|\right)^{2}\right]$
$(\Delta / \sigma)_{\text {max }}=0.18$
$\Delta \rho_{\text {max }}=0.68$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.57 \mathrm{e}^{-3}$
Extinction correction: none Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$B_{\text {eq }}$
Fe	-0.09580 (4)	0.32474 (5)	-0.22888 (4)	2.4 (1)
K1	-0.10859 (7)	-0.06221 (8)	0.05169 (8)	3.8 (1)
K2	0.09596 (7)	0.38284 (9)	-0.00760 (9)	4.2 (1)
O3	0	0.3944 (3)	-1/4	3.0 (1)
O4	-0.0725 (2)	0.1864 (2)	-0.2809 (2)	3.3 (1)
O5	0	0.0399 (4)	-1/4	6.2 (2)
06	-0.1421 (2)	0.4439 (2)	-0.1636 (2)	3.5 (1)
07	-0.2380 (2)	0.4944 (3)	-0.0808 (3)	4.5 (1)
08	-0.1885 (2)	0.3484 (2)	-0.3482 (2)	3.5 (1)
09	-0.3135 (3)	0.2906 (3)	-0.4381 (3)	5.5 (1)
010	-0.0480 (2)	0.2618 (2)	-0.0954 (2)	3.1 (1)
011	-0.0593 (2)	0.1276 (3)	-0.0039 (2)	4.5 (1)
N	-0.2142 (3)	0.2491 (3)	-0.1944 (2)	2.4 (1)
C12	0	0.1359 (5)	$-1 / 4$	3.5 (2)
C13	-0.2575 (3)	0.3282 (4)	-0.1478 (3)	3.5 (1)
C14	-0.2092 (3)	0.4297 (4)	-0.1284 (3)	2.9 (1)
C15	-0.2686 (3)	0.2169 (4)	-0.2865 (3)	3.0 (1)

C16	$-0.2568(3)$	$0.2913(4)$	$-0.3635(3)$	$3.4(1)$
C17	$-0.1801(3)$	$0.1617(4)$	$-0.1310(3)$	$3.2(1)$
C18	$-0.0892(3)$	$0.1858(4)$	$-0.0710(3)$	$3.0(1)$
O19	$0.0178(3)$	$0.4393(3)$	$0.3928(3)$	$5.4(1)$
C20	$0.0857(4)$	$0.3845(6)$	$0.3666(5)$	$6.7(2)$
O21	$0.0854(6)$	$0.0863(7)$	$0.1578(6)$	$10.2(2)$
O22	$-0.032(1)$	$0.157(2)$	$0.308(1)$	$9.0(5)$

Table 2. Selected geometric parameters $\left(\AA,^{\circ}\right)$

$\mathrm{Fe} \cdots \mathrm{Fe}^{\text {i }}$	3.188 (1)	$\mathrm{Fe}-\mathrm{O} 10$	2.082 (3)
$\mathrm{Fe}-\mathrm{O} 3$	1.830 (2)	$\mathrm{Fe}-\mathrm{N}$	2.246 (4)
$\mathrm{Fe}-\mathrm{O} 4$	2.005 (3)	O4-C12	1.298 (4)
$\mathrm{Fe}-\mathrm{O} 6$	2.025 (3)	O5-C12	1.240 (8)
$\mathrm{Fe}-\mathrm{O8}$	2.020 (3)	O11.. 021	2.924 (9)
$\mathrm{O} 3-\mathrm{Fe}-\mathrm{O} 4$	98.7 (1)	$\mathrm{N}-\mathrm{Fe}-\mathrm{O} 3$	175.4 (1)
$\mathrm{O} 3-\mathrm{Fe}-\mathrm{O} 6$	95.5 (1)	$\mathrm{N}-\mathrm{Fe}-\mathrm{O} 4$	85.6 (1)
$\mathrm{O} 3-\mathrm{Fe}-08$	103.8 (1)	$\mathrm{N}-\mathrm{Fe}-\mathrm{O} 6$	80.1 (1)
O3-Fe-O10	102.5 (1)	$\mathrm{N}-\mathrm{Fe}-\mathrm{O} 8$	77.8 (1)
$\mathrm{O} 4-\mathrm{Fe}-\mathrm{O} 6$	165.5 (1)	$\mathrm{N}-\mathrm{Fe}-\mathrm{Ol} 0$	76.4 (1)
$\mathrm{O} 4-\mathrm{Fe}-\mathrm{O} 8$	88.1 (1)	$\mathrm{Fe}-\mathrm{O}-\mathrm{Fe}^{\text {i }}$	121.1 (2)
O4-Fe-O10	86.9 (1)	$\mathrm{Fe}-\mathrm{O} 4-\mathrm{Cl} 2$	122.4 (3)
$\mathrm{O} 6-\mathrm{Fe}-\mathrm{O} 8$	91.4 (1)	O4-C12-O5	120.2 (3)
$\mathrm{O} 6-\mathrm{Fe}-\mathrm{O} 10$	87.2 (1)	O4-C12-O4 ${ }^{\text {i }}$	119.7 (5)
$\mathrm{O} 8-\mathrm{Fe}-\mathrm{O10}$			
Symmetry code: (i) $-x, y,-z-\frac{1}{2}$.			

Laue group $2 / m$ and systematic absences, $h k l$ for $h+k \neq 2 n$ and $h 0 l$ for $l \neq 2 n$, indicated the space group $C c$ (No. 9) or $C 2 / c$ (No. 15). Assuming the space group to be $C 2 / c$, the position of the Fe atom was obtained by direct methods and the other non-H atoms were located from Fourier syntheses. All the H atoms of the complex ion were located from difference syntheses, as were the methanol and water molecules of crystallization, but their H atoms were not included in the refinement. The water molecule is disordered and the site occupation ratio of two possible positions, O 20 and O21, was estimated at $7: 3$ from the isotropic displacement parameters. Calculations were carried out using CRYSTAN-GM software (MAC Science, 1992) on a SUN SPARC2 workstation at Keio University.

Lists of structure factors, anisotropic displacement parameters, H -atom coordinates and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71620 (9 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: OH1044]

References

Awai, M., Narasaki, M., Yamanoi, Y. \& Seno, S. (1979). Am. J. Pathol. 95, 663-672.
Drüeke, S., Wieghardt, K., Nuber, B., Weiss, J., Fleischhauer, H.-P., Gehring, S. \& Haase, W. (1989). J. Am. Chem. Soc. 111, 8622-8631.
Goddard, J. G., Basford, D. \& Sweeney, G. D. (1986). Biochem. Pharmacol. 35, 2381-2387.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
MAC Science (1992). CRYSTAN-GM. Program for X-ray Crystal Structure Analysis. MAC Science, Tokyo, Japan.
Nishida, Y. (1991). J. Pharm. Dyn. 14, S-118.
Nishida, Y., Yoshizawa, K. \& Akamatsu, T. (1991). Chem. Lett. pp. 1521-1524.
Norman, R. E., Holz, R. C., Ménage, S., O’Connor, C. J., Zhang, J. H. \& Que, L. Jr (1990). Inorg. Chem. 29, 4629-4637.

Norman, R. E., Yan, S., Que, L. Jr, Backes, G., Ling, J., Sanders-Loehr, J., Zhang, J. H. \& O'Connor, C. J. (1990). J. Am. Chem. Soc. 112, 1554-1562.
Okada, S. \& Midorikawa, O. (1982). Jpn. Arch. Inter. Med. 29, 485-491.

Acta Cryst. (1994). C50, 546-549

Structural Characterization of MixedValence $1^{\prime}, 2^{\prime}, 1^{\prime \prime \prime}, 2^{\prime \prime \prime}$-Tetraethylbiferrocenium Triiodide

Teng-Yuan Dong* and Chun-Hsun Huang
Institute of Chemistry, Academia Sinica, Nankang, Taipei, Taiwan

(Received 22 December 1992; accepted 22 September 1993)

Abstract

The structure determination of the title compound $\left\{\mu-1\left(\eta^{5}\right): 2\left(\eta^{5}\right)\right.$-1,1'-bicyclopentadienyldiyl-bis[1,2(η^{5})-1,2-diethylcyclopentadienyl]diiron(II,III) triiodide chlorobenzene solvate, $\left[\mathrm{Fe}_{2}\left(\mathrm{C}_{9} \mathrm{H}_{13}\right)_{2^{-}}\right.$ $\left.\left.\left(\mathrm{C}_{10} \mathrm{H}_{8}\right)\right]\left(\mathrm{I}_{3}\right) \cdot \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}(10)\right\}$ indicates that this mixedvalence cation has a valence-trapped electronic state.

Comment

Studies of electron transfer in mixed-valence biferrocenium complexes [(1)-(8)] have revealed that the environment around a given mixed-valence molecule is the most important factor in determining the rate of intramolecular electron transfer (Hammack, Drickamer, Lowery \& Hendrickson, 1988; Sinha, Lowery, Ley, Drickamer \& Hendrickson, 1988; Webb, Geib, Staley, Rheingold \& Hendrickson, 1990; Dong, Kambara \& Hendrickson, 1986; Dong, Hendrickson, Iwai, Cohn, Geib, Rheingold, Motoyama \& Nakashima, 1985). A recent finding of interest is that there is a correlation between the dihedral angle of the Cp rings for a given ferrocenyl moiety and the rate of electron transfer, i.e. the larger the dihedral angle, the faster the electron transfer (Dong \& Chou, 1990; Dong, Chang, Huang, Wen, Lee, Chen, Yeh \& Yeh, 1992; Dong, Lee \& Lin, 1992). In a previous communication (Dong et al., 1992), we reported that there is a dramatic difference in electron-transfer rates between complexes (9) and (10), which were prepared by

